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Abstract—TIt is becoming increasingly evident that data science
and artificial intelligence are key technologies in the future of
automotive industry. Artificial Intelligence (AI) successes are sig-
nificant, with some limitations in terms of algorithms portability
and code industrialization for mass production and deployment.
This is because there are many domains where several software
development process standards need to be applied.

The approach presented in this paper tries to overcome this
issue by creating a unique platform with multiple artificial
intelligence engines. By using state-of-the-art AI libraries, to-
gether with target-independent software, tackles the challenge of
driving context recognition in embedded systems, and uses it as
a validation method.

Index Terms—artificial intelligence, deep learning, embedded
Al, automotive, autonomous driving

I. INTRODUCTION

Artificial intelligence, as an idea, firstly appeared soon after
humans developed the electronic digital computing that make
it possible. Just like any digital technology, Al has ridden
waves of hype and gloom. Nowadays, Al is poised to unleash
the next wave of digital disruption, as we are already seeing
real-life benefits in several domains, such as computer vision,
robotics, automotive and language processing.

Interest in Al has increased again lately, because of ad-
vances in fields such as deep learning (DL), underpinned
by faster computers [1]. These machines are equipped with
powerful graphics processing units (GPUs), which can process
images between 40 and up to 80 times faster than a normal
processor [2].

The analysis of large data volumes using specialized learn-
ing algorithms and pattern recognition provides the modelling
of complex systems and dynamic processes. This enabled the
automotive industry to focus more on Al research towards
autonomous vehicles [3], with applications such as environ-
ment perception through occupancy grids, or synthetic data
generation.

Although the successes of Al in the automotive domain are
significant, it is worth remembering that it also has limitations
[4]. For example, one major criticism of many Al systems is
that they are often regarded as black boxes [5], which only
map a relationship between input and output variables, based
on a training dataset. A robust framework which also allows
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Fig. 1: Al Engines framework, following the two major operations
from the deep learning workflow: training and inference, with addi-
tional layers for hardware integration and performance optimization

the visualization of intermediate stages in the training and
deployment of Al models might be able to overcome these
aspects.

This article aims to contribute to the ongoing debate about
the role of Al in the automotive industry, and to highlight the
necessity of a robust framework for developing such systems.
In particular, the contributions are:

(i) Providing an understanding of automotive DL applica-
tions such as occupancy grid classification [6], [7] and
generative one-shot learning [8].

(i1) Highlighting the advantages of using platform-
independent Al engines when designing, training and
deploying DL systems in different environments.

(iii) Promoting the importance of complying DL design
to software development process standards, such as
15026262 [9] or ASPICE (Automotive Software Process
Improvement and Capability Determination).

In this paper, the training and deployment of an optimized
DL algorithm for indoor occupancy grid classification was
performed, while the evaluation took place on a model car
prototype.

The rest of the paper is organized as follows. In section II, a
brief overview of the related work and state of the art advances
is provided. In section III, the proposed AI framework is
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described, together with the platform independent Al engines
and the associated automotive use-cases. A short insight into
code industrialization and compliance to process standards is
also given in section III. Section IV is used for performance
evaluation and provision of the experimental results, while
section V is used to conclude the paper.

II. RELATED WORK

One of the challenging problems of modern software devel-
opment (and not only in Al industry) is that there are dozens
of different frameworks doing literally the same things. Every
big company that does some kind of machine learning has to
have its own framework, together with the plethora of open
source solutions.

When developing single Al applications it would be in-
credibly useful to use different frameworks [10], but merging
them all takes a lot of development time and it distracts both
data scientists and software developers from working on more
important tasks. The solution can be a unique format of neural
networks that can be obtained from any framework, and that
can easily be deployed and used by developers and scientists.

The current state of the art in automotive Al development
is quite distributed [11], [12], especially when discussing the
available software libraries and taking into account the ratio
between advantages and disadvantages. Predictions on au-
tonomous vehicles implementations also highlight the impor-
tance of reduced complexity in development and deployment,
in order to save costs and optimize the technology [13].

Deep learning techniques can be applied to many use cases
in the automotive industry. There are several areas where the
DL systems were significantly improved, like computer vision
for lane or pedestrian detection, natural speech recognition or
path planning. The Al open source software libraries used in
this work are Tensorflow [14], Caffe2 [15] and CNTK [16].
These were chosen as the three best-performers out of the
comparison considering several key characteristics.

The training of deep neural networks (DNNs) usually re-
quires a large manually annotated database with input samples.
Each software library uses its own input types, which means
that a huge amount of training data is needed for having a
modular framework. Collecting such a large input data set is
not trivial, thus an alternative method is needed.

In order to try to bypass this manual annotation step, in our
past work a semi-parametric approach to one-shot learning
was used, coined GOL (Generative One-Shot Learning) [8].
Such an algorithm takes as input single one-shot objects, or
generic patterns and templates, together with a small set of
regularization samples used to drive the generative process,
and generates as output new synthetic data.

GOL is intended to generalize on unseen data, while in-
creasing the classification accuracy on synthetic data as well
as possible. The training of GOL implies the learning of a set
of optimal parameters ©* which maximize the generalization
energies and classification accuracy.

III. ARTIFICIAL INTELLIGENCE FRAMEWORK
A. Overall architecture

The overall framework architecture, depicted in Fig. 1,
follows the two major operations from the DL workflow:
training and inference, together with the additional layers for
hardware integration and performance improvement. The Al
workbench is responsible for the training, prototyping and
development of the system, by making use of existing methods
and tools, and considering Al algorithms as toolboxes within
the whole framework.

The first step consists on defining the requirements and
collecting the necessary data for the training process. After
the data is collected, it needs preprocessing, which includes
annotation, normalization and filtering. Data preprocessing
is a key step which enables proper prototyping of the Al
algorithms, followed by a training and validation process. The
training itself feeds the already defined data to the network,
allowing it to learn a new capability, by reinforcing correct
predictions and correcting the wrong ones.

Once the Al algorithm is tested and validated, it can be
deployed as an Al Inference Engine. This represents the
deployment of a trained model for each associated use-case,
in order to evaluate new objects, and make predictions of real-
world data with similar predictive accuracy.

B. Platform independent Al Engines

Deploying an Al algorithm inside an autonomous car is
not trivial, due to the limitations of platform dependencies
and decreased computation performance. Through our work
a solution to overcome these limitations was proposed, by
building platform-independent Al engines which are capable
of various functionalities. Examples of such capabilities start
from complex classification tasks and continue with scene un-
derstanding, objects perception and objects recognition tasks.

Our framework is capable, by using interfaces to the most
important deep learning libraries, to integrate various neural
networks topologies and to use data from different sensor types
for evaluation. In this direction, a framework was developed,
which contains inference engines for each of the chosen Al
libraries: TensorFlow, Caffe2 and Cognitive Neural Toolkit
(CNTK).

Caffe2 is the long-awaited successor to the original Caffe,
with the main difference being that it is more scalable and
light-weight.

TensorFlow presents the advantage that it supports more
tasks than just DL, and it has an abstraction layer through
computational graphs. It supports fine grain network layers
that allow users to build new complex layer types without
implementing them in a low-level language.

CNTK (Cognitive Toolkit) was initially developed for the
advancement of speech recognition. CNTK supports both
recurrent (RNN) and convolutional (CNN) types of neural
models which make it a good candidate for handling image
and speech recognition problems. It is faster than other frame-
works, and it includes a thorough documentation.
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Designed as platform independent, the Al engines can be
easily used on desktop computers for research and develop-
ment purposes and also can be integrated inside embedded
platforms, as it will be demonstrated later in this paper.

In order to deploy our algorithm inside a stable and robust
environment, our platform for Al engines was integrated inside
Automotive Data and Time Triggered Framework (ADTF).
This framework is described in detail in subsection IV-C.

Due to ADTF’s limitations, in terms of supported program-
ming languages and tool-set versions, the first step of our work
was to link the selected Al libraries against ADTF software
modules. To make the integration possible three C++ libraries’
API were used to design wrappers for accessing the core func-
tionalities. The wrappers were exported as dynamically linked
libraries and referenced inside the implemented modules.

One of the ideas behind this approach was to have separated
modules for each Al library. This will provide a big advantage
when using deep learning features inside ADTF, and can help
developers with less experience in the field to easily access and
test the already existing algorithms. Another possibility is to
use these modules for implementing new original alternatives
for specific problems.

C. Occupancy grid classification

A possible use-case for which our AI framework can
represent a solution is the understanding of the context in
which an autonomous car is driving. Occupancy grids can
be used to classify between various situations, with different
classes representing the driving context, from which it can
pointed out city, motorway, highway, intersection, parking lot,
roundabout or traffic jam classes.

The occupancy grids can be constructed using the Dempster-
Shafer(DS) theory, also known as the Theory of Evidence or
the Theory of Belief Functions developed by Shafer in 1976
from Dempster’s work [17].

The basic idea behind occupancy grids is the environment’s
division into 2D cells, each cell representing the probability,
or belief, of occupation. Using the Dempster-Shafer rule, the
occupancy maps can be built by taking into consideration the
total degree of conflict between two sources of evidence:

mia(6) £ Z Hmi(Xi) 1)

X;1,Xp€27 =1

X1NX2=¢
where my 2(¢) measures the amount of conflict between the
two mass sets. The term 1 — mq2(¢) is a normalization
constant.

Exporting the occupancy grids as images will enhance the
possibility of using a convolutional neural network to solve
this classification problem. This use-case can be seen as a
useful solution in autonomous driving, in order to solve issues
linked to missing GPS signal in different locations.

In this paper the occupancy grid maps will be used to
demonstrate the functionality of our Al framework, classifying
the driving context in an indoor environment. A model car
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Fig. 2: V-model software development paradigm for process compli-
ant prototyping and deployment

prototype is used as an embedded platform on which the
algorithms can be deployed.

D. Compliance to process standards

In the automotive industry, one of the most important
aspects in building software modules is the compliance to
software development standards and its integration in vehi-
cles embedded platforms. This ensures that the software is
reliable and stable, such that it can be used in safety-critical
applications.

It is important to approach automotive Al development
from a more controlled V-model perspective, in order to
address a lengthy list of challenges, such as requirements
for the training, validation and test datasets, criteria for the
data definition and preprocessing and impact of parameters
tuning. In Fig. 2 a V-model is proposed for prototyping and
development.

Data definition, normalization, and cleaning, together with
its exploitation through the Al Inference Engine Architecture,
are crucial development phases since the DNN’s functional be-
haviour is the combined result of its architectural structure and
its automatic adaptation through training. The integration of
the obtained inference engines, associated with the deployment
of the test scenarios and with statistical evaluation provide the
required assessment tools for such an architecture model.

IV. PERFORMANCE EVALUATION
A. Dataset and Training

In order to demonstrate the applicability of our framework
in autonomous driving related tasks, a deep learning algorithm
was integrated inside an embedded platform to classify indoor
driving scenarios.

Concerning the training and validation of our algorithm, a
dataset was created using sensor inputs recorded with a fully
equipped model car prototype, which can be seen in Fig. 4.
The model car has been driven inside an office building and
has recorded various data from the hallway and offices. A
couple of samples are shown in Fig. 5.

The generated occupancy grids have been computed as 2D
arrays, each covering 8 square meters in reality, and having a
25 cm resolution.

On one hand, 4000 samples were recorded, and annotated
into two classes: hallway and office. On the other hand, the
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Fig. 3: Loss and accuracy progress over 50 training epochs. On the left side is the loss evolution, whereas on the right side is the progress
of the overall accuracy, both on validation and training data sets.

same amount of samples were generated using GOL [8], to
the extent of generalizing the output of the neural network,
and to prevent over-fitting. From the entire dataset, 80% were
used for training, 15% for validation and 5% for testing.

A user interface suitable for prototyping and training various
deep learning topologies, and also capable of data preprocess-
ing (i.e. annotation) was developed using Python programming
language together with Keras API. One major advantage of
the latter is that it can be used in both CPU and GPU
configurations.

For the sake of reducing the time necessary for the training
process, the following hardware set up was used: a desktop
computer equipped with an Intel Core i7 7700K CPU, 32 GB
RAM, and a high-performance graphics card, namely NVIDIA
GeForce GTX 1080 Ti.

TensorFlow was used in order to create the neural network
architecture, a model which was trained from scratch using the
dataset described above. Adam [18], a method for stochastic
optimization, was chosen as solver and categorical cross-
entropy as loss function.

The criteria for this choice was the computation efficiency of
the loss minimization, little memory requirements, and the ap-
plicability for problems with noisy and sparse gradients. Adam
includes an adaptive moment estimation (my,v;), having as
update formulas:

(my)i = Br(mi—1)i + (1 = B1(VL(Wy)); (2

(v1); = Ba(vi—1); + (1 — B2(VL(Wy))? 3)
o L Vi- (B2)7  (ma)

Wera)i = (Wt)l 1- (ﬂl)zz (ve)i + € @

,where (31, 5o represent hyper-parameters and « represents the
learning rate.

The deep learning algorithm used for indoor occupancy
grids classification is represented by a deep convolutional
neural network which constructs a grid representation of the

indoor space. The model architecture was kept simple for
faster computation without loosing the accuracy.

The neural network consists of two convolutional layers,
with 32 and 64 Kernel filters, respectively. These are followed
by a Max-pooling layer and two Fully-connected layers. Recti-
fied Linear Unit (ReLu) filters each convolution, and a Dropout
layer was included between the Fully-connected layers in order
to reduce over-fitting. The model was trained over 50 epochs.
The progress of loss and accuracy values can be observed in
Fig. 3.

B. Model Car Prototype

In this section of the paper, a short description of the car
prototype used for framework deployment will be provided.
As it can be seen in Fig. 4, the prototype is 60 cm long, 30
cm wide and represents a model scale of 1:8. It features a
wide range of close to serial-production-quality sensors and
actuators. Additional features include a powerful processing
unit, four-wheel drive and two steering axles.

The model car is equipped with ultrasonic proximity sen-
sors, a 2D / 3D camera and a simple LIDAR distance sen-
sor. Five low range ultrasonic sensors (model HC-SR04) are
mounted on the front bumper and three on the rear bumper.

The camera (Asus Xtion Pro live) is located on the model
car. It provides two image streams: one RGB image stream
(VGA resolution) and one image which contains depth infor-

Camera

-. /_

Fig. 4: Model car prototype used to deploy and test the Al engines
inside an embedded environment.
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Fig. 5: Occupancy Grid samples (middle) and the activations of
model’s first convolutional layer (right), along with their respective
visual instances of the indoor environment (left).(a) Hallway. (b)
Office Room.

mation. The latter is calculated from an infra-red grid that is
projected on the ground.

In that manner, the distance to objects can be computed very
precisely, with less than one centimetre deviation, even at a
wide range (up to 3 m). This camera model cannot provide
distance information closer than 60 cm.

A basic LIDAR sensor mounted on the right side of the car
is used to measure the free space right next to the car. The
ultrasonic sensors and the LIDAR are connected to Arduino
Micro micro-controllers, which in their turn are linked to the
central processing unit via USB.

Our work was based on the data provided by the depth
camera, input used to map the indoor space into occupancy
grids.

C. ADTF - Automotive Data and Time-Triggered Framework

Used to integrate and test our Al engines, ADTF is a plat-
form which supports the development process in automotive
software development. This environment has the advantage of
a stable measurement framework, which is used in Advanced
Driver Assistance Systems(ADAS) and can use almost any bus
data (e.g. CAN, FlexRAY, Ethernet), as well as raw data from
other sources.

From the main features of this framework, it can point out
the stability for ADAS applications, the capabilities to inte-
grate customers specific hardware, the real-time reproduction
and visualization of the collected data during the recording.

There are some typical applications for ADTF framework,
like measurement visualization, prototypical algorithm testing,
validation of the measurement results, playback of the record-
ings as hardware-in-the-loop, and deployment of machine
learning algorithms.

D. Indoor grid classification

The most important task of an autonomous vehicle is the
localization inside an unknown environment. In the automotive
industry, the localization is mainly realized using the GPS, a
system which is not reliable for every decision an autonomous
vehicle should take.

In this direction, the proposed use-case for our Al engines
was the classification of the driving context using occupancy
grids. In order to demonstrate that our framework can be used
for this purpose, the versatility of our work was evaluated, by
constructing and classifying indoor grids, using a Windows
based desktop computer, a Unix based model car prototype and
also Azure Cloud technology as deployment environments.

Examples of occupancy grids are visible in Fig. 5. The red
cells represent the occupied space, while the free space is
marked with green. The color intensity represents the degree
of occupancy. If the intensity of the green color is higher, the
probability of a cell to be free is also increased.

During this research, the occupancy grids were built using
the depth camera mounted on the top of the model car and
exported as images. Later the samples were used to train and
validate the deep learning algorithm.

E. Experimental results

The portability of Al engines was demonstrated by de-
ploying the DL algorithm inside a model car controlled by
an embedded Unix operating system. In order to validate
our work a deep neural network trained for indoor grid
classification was used, to classify between office room and
hallway. Visual samples which were collected during the test
drive, together with associated occupancy grids and feature
maps can be observed in Fig. 5.

Focusing on the framework’s adaptability and robustness, a
trivial algorithm was implemented, for a simple classification
task. The results gathered from the model car were compared
with the ones obtained by running our Al framework on a
desktop computer and also inside a Azure cloud environment.

The comparison was made in terms of algorithm detection
speed, the purpose being to optimize the neural network design
to ensure reliable detection rate even in environments which
doesn’t benefit from GPU-grade computing power.

There are some major differences between the occupancy
grids constructed for the hallway and office rooms, differ-
ences which help the algorithm to easily classify between
the corresponding classes. To the extent of demonstrating the
algorithm’s accuracy, a confusion matrix was built, as it can
be seen in Table I. Calculating the confusion rate needed 200
samples, which were tested against the ground truth. The result
shows that the network topology can distinguish between office
room and hallway, with a high accuracy.

Developing our software modules in compliance with stan-
dards required for automotive industry leads to the advantages
of being platform independent. In this direction, our work was
evaluated using our Al engines in different environments.

As it was presented above, the focus was to test our
framework on an embedded platform. Concerning the pos-
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TABLE I: Confusion matrix of the predicted indoor driving context

Actual class
Office Room | Hallway
< 2 Office Room 0.97 0.03
£0 Hallway 0.05 0.95

sibility to run our software inside various environments, a
desktop computer and a Cloud configuration were used for
deployment. A CPU-based configuration was used to deploy
the DL algorithm, in order to have the possibility to compare
the detection rate performances. Using a desktop computer is
effortless, once you already deployed the engines inside an
embedded platform.

The code is cross-platform, so no changes are necessary.
Due to the fact that the software modules were developed
inside ADTF, the functionality is easily enabled by loading
the modules. In terms of detection rate, there is no major
difference between a desktop computer and the model car
platform, as it can be observed in Table II.

FE. Cloud Deployment

Another approach was to run the framework inside the Mi-
crosoft Azure cloud. The Azure Container Service is leveraged
for starting multiple instances in parallel, allowing a high result
throughput, as well as a quick validation of the classification
components. Microsoft Azure was chosen for the availability
of an unlimited number of machines configured with diverse
resources.

To be able to test our Al engines in the cloud, the software
modules were wrapped in ADTF and ran as part of a docker
image. Each docker processes a list of recordings and saves
the results in XML format. Using the cloud technology our
algorithm performance was significantly improved, in terms
of processing speed, as can be also seen in Table II.

TABLE II: Comparison of indoor environment classification perfor-
mances

Platform Frame Rate
Model Car 10 frames per second
Desktop Computer | 12 frames per second
Cloud 25 frames per second

V. CONCLUSIONS

In this paper, we have designed a framework which can be
used as a starting point for Al code compliance. We believe
that our work’s main contribution is the Al framework’s usage
for development and deployment, not only as prototype, but
also for series production.

We have demonstrated the possibility of designing and
implementing a complete framework, capable to cover all
algorithm phases, from training to deployment. The possibility

to use various deep learning libraries inside a single framework
is very useful in terms of production efficiency.

Comparing with the already existing frameworks, which
cover limited technologies and specific neural networks
topologies, our work can be used for different tasks and on
different platforms. We have proven the possibility of running
our Al engines in three different environments, a desktop
computer, an embedded platform, and into Microsoft Azure
Cloud, with minimum configuration changes.

One way of improving our framework is extending it for
more automotive use-cases, like behaviour arbitration, path
planning or environment perception. Another possibility is to
deploy the framework inside a real car, fully equipped for
driving in real-world traffic scenarios.
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